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Outline

• A few basics concepts.

• Available LTS and HTS conductors.

• Our applications and main results for 
LTS.

• Our applications and main results for 
HTS.

• Conclusions.
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Ic

Bc

Tc

Superconductivity, first discoveries

1913 Onnes

K

Zero resistivity
below some 
threshold 
temperature 

CRITICAL SURFACE
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Why does Superconductivity occur ?

Below Tc, Bc, and Ic, the superconducting phase 
transition takes place because energetically favored.
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Types of Superconductors
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a0

B

Flux Pinning Mechanism in Type II’s

In an external B, a type II SC is penetrated by quantized flux vortices (Φ0). The flux will 
form a triangular lattice of uniform spacing a0∝ B-1/2. The passage of a current imposes 
on the lattice a FL=J x B per unit volume. The flux lattice is pinned in place by 
interacting with microstructural features like defects or discontinuities in the material.
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HC2

Upper critical field
(bulk superconductivity 

is destroyed)

H* - Irreversibility Field
(the critical current density goes to zero, due to a 

dissipative fluxons-flow state driven by the 
Lorentz force)

H-T diagram

5-7 T(77K)>100 T(4K)92 KYBCO

~0.2T(77K)>100 T(4K)108KBSCCO
-2223

8 T (4 K)15 T (4 K)39 KMgB2

24 T (4 K)27 T (4 K)18 KNb3Sn

10.5 T(4 K)12 T (4 K)9 KNbTi

H*HC2TC
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Examples of Applications of Superconductivity
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Magnets for Future Accelerators

Prototype of muon cooling channel and 
high field (> 25 T) solenoids for muon
beam acceleration. 

High field (> 10 T) dipoles 
and quadrupoles for LHC 
upgrades and hadron
beam acceleration. 

LTS

LTS

HTS

Vlad. Kashikhin

Mauricio Lopez

A. Zlobin et al.
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Superconductor R&D Program

SC R&D

Strand 
Development

Cable 
Development

Magnet Design and 
Data Analysis

• Serve as an interface 
between magnets and 
conductors beyond NbTi.

• Be a leading center for 
conductor technology: 
Focus research and 
scientific studies on the 
process of cable 
development.

• Help Industry and small 
companies produce the best 
possible strand for High 
Field accelerator quality 
magnets.

MISSION
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HTS and LTS Performance at 4.2 K
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Target Specifications for HEP Conductor

Parameter Value 
Strand diameter, mm 1.000 / 0.700 
Jc(4.2K,12T), A/mm2 > 3000 

deff, µm < 40 / 30 
Cu, % 50-60 
RRR > 100 

Piece length, km > 10  
Cabling degradation < 10 % 

Cost, $/kA-m (12T, 4.2K) < 1.5 

Plus stress requirements  ≥ 150 MPa
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Hysteresis Curve
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Why such requirements?

• Jc

• ∆M ∝ Jc·deff
Persistent currents are induced in a type 
II superconductor when the field is 
changed. These bipolar currents are the 
source of severe field distortions at low 
excitation. They generate all multipoles
allowed by the coil symmetry.



Nb3Sn

100 µm

1mm

192 tubes

1mm

192 tubes

Internal Tin Powder-in-Tube (PIT)

50 µm61 subelements 192 tubes
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Heat Treatments
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Nb3Sn Phase Diagram

Nb-Cu-Sn ternary 
phase diagram

Nb-Sn binary 
phase diagram
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Parameters that control Jc in Nb3Sn

Atomic percentage of Nb
in the non-Cu section

Jc = 82.82 x (Nb at.%) - 1033
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J c
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/m
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2 ] Iq
• For 3000 A/mm2, one 
needs 50 at. % Nb

• For the present 
technology, one can 
estimate a maximum 
intrinsic Jc of 5000 A/mm2

by extrapolation to 
75 at.% Nb
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For a given 
technology, through 
measurement of the 
SC layer thickness 
and associated layer 
Jc with time and 
temperature, a 
filament size 
optimized for max Jc
can be found.
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Jc vs. Time
Nb3Sn
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Results of Cabling Degradation
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The level of degradation depends on the strand ability to 
withstand plastic deformation, and on cable packing factor.
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Magnet Test Results
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• There were two 
families of 
magnets.

• They differed in 
the SC material.

• The cables had 
the same 
keystoned
geometry (~88% 
PF), with 
ceramic 
insulation or 
S2-glass plus 
ceramic binder.

Deff: 80 -110 
µm

Deff: 50 µm



E. Barzi, SC Strand and Cable R&D for Future Accelerators,  FNAL
23

February 7, 2008

Effects of Subelement Size

It had always been known that excessive filament sizes could lead to instabilities, 
but the practical effect on Nb3Sn magnets had not been acknowledged before us.
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Adiabatic and Dynamic Stability Criteria

• Key parameters are Jc, Tc and Deff
as well as γC (adiabatic criterion) 
or k (dynamic criterion). 

• These are very conservative 
criteria, as they predict zero 
transport current for Nb3Sn 
strands with Jc~2 kA/mm2, at
B<13T for Deff ~150 µm and  

B<6T for Deff ~50 µm.
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Enthalpy Stabilization Analysis 
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For strands with large Deff and high 
Jc the maximum transport current at 
low B is smaller than at high B

Vadim Kashikhin
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Magnet Stability Predictions
• Top plot shows the fraction of 

short sample current a magnet 
can carry as a function of peak 
design field for various Jc·Deff.

• Bottom plot shows the maximum 
Jc·Deff allowed as a function of 
magnet peak design field.

 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 2 4 6 8 10 12 14
 Magnet Design Field, T

Q
ue

nc
h 

C
ur

re
nt

/D
es

ig
n 

C
ur

re
nt

Jc*deff = 152 A/mm
Jc*deff = 182 A/mm
Jc*deff = 213 A/mm
Jc*deff = 243 A/mm
Jc*deff = 273 A/mm
Jc*deff = 304 A/mm
Jc*deff = 334 A/mm
Jc*deff = 364 A/mm
Jc*deff = 395 A/mm
Jc*deff = 425 A/mm

 

100

150

200

250

300

350

6 7 8 9 10 11 12 13 14 15 16
 Magnet Design Field, T

J c
(1

2T
,4

.2
K

)*
d e

ff
, A

/m
m

Quench current degradation

No degradation



E. Barzi, SC Strand and Cable R&D for Future Accelerators,  FNAL
27

February 7, 2008

Effect of Deff on Normalized I
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Cable Tests

Cable samples tested at BNL (B<7 T, 4.3 K), CERN (B<10 T, 1.8-4.2 K) 
and Fermilab (B<2 T, 2.8-4.5 K) confirmed unstable behavior of 
conductors with large Deff.

G. Ambrosio



E. Barzi, SC Strand and Cable R&D for Future Accelerators,  FNAL
29

February 7, 2008

VI and VH Measurements 
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Based on our model’s predictions, FNAL and other LABS introduced a VH test 
to pinpoint the minimum quench current predicted.
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RRP Strand Development with OST

114/127 
restack with 
spaced SE’s
Jcmax~3000 
A/mm2

108/127 
restack
Jcmax~2400 
A/mm2

54/61 
restack
Jcmax~3000 
A/mm2

60/61 
restack with 
spaced SE’s
Jcmax≥3000 
A/mm2

Increase Subelement Number
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Clear dependence of Js with subelement size for round 
strands with similar Jc’s and RRR’s.
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Small Racetrack (SR)

• LBNL design 
• Simple to fabricate
• Used as cable test before 

fabricating dipoles

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Magnet and cable design parameters. 

Cylinder – Al 6061 – T6

Yoke – 1010 Steel

Pressure Pad – 1018 Steel

Load key –1018 Steel

Skin – 1010 Steel

Pole piece – 1010 Steel

Horseshoe – 304 steel

Interlayer spacer – G10 

Two layer coil –
Nb3Sn cable 

End shoe – 304 steel

Cable support – G10
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SR02 and SR03

RRR = 129

SSL

1 mm MJR (54 el.)
deff=110 µm 
Jc=2100 A/mm2

1 mm RRP (108 el.)
deff= 80 µm 
Jc=2300 A/mm2
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Effects of Cabling on Subelement Size

• At least two phenomena during Rutherford cabling can 
increase the effective filament size:

* deformation, which changes the filament size 
distributions, with the average filament size typically 
increasing.

* filaments sometimes merging into each other creating 
larger non-Cu areas with somewhat continuous barriers. 
If filaments are fused together, the strand sees a larger 
deff and its instability can dramatically increase locally.
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Simulating Deformation
This can be better seen by simulating cabling deformation 
using homogeneously rolling to decreasing thicknesses.

MERGING OF 
SUBELEMENTS
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RRP Strand Development with OST

114/127 
restack with 
spaced SE’s
Jcmax~3000 
A/mm2

108/127 
restack
Jcmax~2400 
A/mm2

54/61 
restack
Jcmax~3000 
A/mm2

60/61 
restack with 
spaced SE’s
Jcmax≥3000 
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Refinement of the Design with OST

Remove inner row Remove inner row and add 
back corners
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Nb3Al Comeback
In collaboration with Akihiro Kikuchi, from the National 
Institute of Material Science (NIMS), Tsukuba, Japan, since 2005
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(a) F1-Nb3Al strand (2006) (b) F3-Nb3Al strand (2007)

Nb3Al Strand Designs
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Nb3Al Rutherford Cable R&D
(a) Low Compaction F1-Nb3Al Cable (2006)

(b) Highly Compacted F3-Nb3Al Cable (2007)

Width: 14.18 mm, Thickness: 1.78 mm, Keystoned, PF: 87.0 %

Width: 14.17 mm, Thickness: 1.99 mm, Rectangualr, PF: 82.5 %
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F0 F1 F3 F4

Nb3Al strand specification

F0 F1 F3 F4
Strand dia. (mm) 1.03 1.03 1 1.04
Filament dia. (mm) 50 50 38 38
Filament number 132 144 222 276
twist pitch (mm) 362 362 none 45
Cu ratio 1 (50%) 1 (50%) 1 (50%) 0.87 (46.6%)

A. Kikuchi (12/19/2007)
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Ic and Bc2 of F4
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Nb3Al Small Racetrack Magnets

(a) SR-04 (2006) - TESTED (b) SR-05 (2007) 
TO BE TESTED
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HTS Crystal Structure

Anisotropic 
layered

structure

o Suppression of H*compared to HC2;
o Anisotropy of Jc and HC2 parall. (ab plane) and 
perp.(c direction) to the superconducting layers

MgB2
NbTi

Nb3Sn

YBCOYBCO

BSCCOBSCCO--22232223
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Round Wires and Anisotropic Tapes
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2nd Generation Coated YBCO
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R&D for HTS

Monitor state-of-the-art HTS’s and keep all options open

Solve the powder leak problem in Bi-2212

Understand field and temperature dependence of anisotropy

MISSION

The experiment at FNAL to confirm that ionization cooling is 
an efficient way to shrink the size of a muon beam would 
pave the way for Muon Collider machines, which require in 
their last stages of cooling and of acceleration very high field
(> 25 T) solenoids.
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Cable Samples

Cable ID No. 
strands 

Strand size, 
mm Strands used Ave. thickness, 

mm 
Average width, 

mm PF, % Tested 

1 19 1.02 A 1.938 ±0.003 9.992 ±0.050 82.6 Y 
2 “ “ “ 1.883 ±0.007 9.987 ±0.031 85.1 N 
3 “ “ “ 1.848 ±0.009 10.008 ±0.022 86.5 Y 
4 24 0.81 B 1.554 ±0.008 9.921 ±0.072 82.7 Y 
5 “ “ “ 1.51 ±0.010 9.928 ±0.035 85.0 N 
6 “ “ “ 1.485 ±0.014 9.896 ±0.051 86.7 Y 
7 27 0.692 D (24), copper (3) 1.309 ±0.011 9.876 ±0.059 81.0 N 
8 24 0.81 D (20), B (4) 1.551 ±0.022 9.921 ±0.056 82.8 Y 
9 21 0.911 D 1.711 ±0.007 9.959 ±0.082 82.8 Y 
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Ic of the Extracted Strand

There is no noticeable dependence on B. Besides for a reproducible single case, 
the Ic degradation of the extracted strands was less than 20% at least up to 85% 
of packing factor. Strands of different designs behave differently to cabling. For 
instance the Ic degradation is larger for strand B, which is an older design that 
had not been optimized for cabling.
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Spectrum No. 1 2 3 
Element At. % At. % At. % 
Ag (L) 0 100 0 
Bi (M) 14.91 0 3.59 
Sr (L) 9.04 0 2.21 
Ca (K) 5.53 0 0.78 
Cu (L) 11.49 0 5.80 
Mg (K) 0 0 29.33 
O (K) 59.03 0 58.28 
Totals 100.00 100.00 100.00 

SEM/EDS Cable Surface Analysis

The surface of all the cables after 
reaction showed black spots 
embedded in the silver coating.

Bi-2212? Bi-2212+MgO?
Caused by filament powder leaks

For all the cables, tested at 
self-fields of 0.1 to 0.3 T, an Ic
degradation of about 50% was 
measured. This was much 
larger than the reduction 
found on the extracted 
strands. A. Kikuchi
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Conclusions from Ic Tests and SEM/EDS

Further analysis would be desirable, but it is already clear 
that the performance of these cables has been drastically 
degraded because of changes in the microstructure and 
chemical composition due to powder leaks during heat 
treatment. 

However, because no leaks were observed on the extracted 
strands, which performed well, this problem may not be as 
much related to the strand ability to withstand deformation 
as to the Ag0.2%Mg alloying of the sheath AND/ OR the 
heat treatment of the cables itself, i.e. oxygen distribution 
on hidden surfaces, temperature inhomogeneities, and 
such.
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Critical Currents
BSCCO-2223
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Ic(77K, 0T)=121±1 A
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Effective pinning is 
maintained for the parallel 
direction over the entire 
field range
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Angular Dependence at 4.2 K
4.2 K

1

2

3

4

5

6

7

-11.25 0 11.25 22.5 33.75 45 56.25 67.5 78.75 90 101.25
Angle, ο

Ic
 /I

c(
77

K
,0

T)

0T
1T
2T
3T
4T
6T
8T
10T
12T
15T

4.2 K

0

2

4

6

8

10

-11.25 0 11.25 22.5 33.75 45 56.25 67.5 78.75 90 101.2
5Angle

Ic
 /I

c(
77

K
,0

T

1T
2T
3T
4T
6T
8T
12T
15T

Bi-2223

2G 348

Most of the Ic reduction occurs 
between 90 and 45 degree.
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B and T Dependence of Anisotropy
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The B dependence has a 
linear trend, where the 
slope value increases 
with T.

No observable T dependence. 
The ratio saturates at ~7. 
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30T Hybrid Magnet at NIMS

52 mm bore ( room temperature )
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Super Power 2G YBCO up to 28 T
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Conclusions

• A major effort of the superconductor development program goes 
into supporting magnet programs for future accelerators

• For LTS, after contributing to the Jc improvements the focus is now 
on:

* Studying the degradation of SC properties due to cabling in 
order to help Industry improve their strand design

* Measuring the acceptable stresses for various Nb3Sn and 
Nb3Al technologies to assess their applicability at various fields

* Using magnet data to set up an evaluation and prediction 
procedure

• For HTS, the focus is on:
* Monitor state-of-the-art HTS’s and help solve the major 

challenges to push Jc.
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SCIENTISTS/ENGINEERS:
• Emanuela Barzi (Univ. of Pisa)
• Daniele Turrioni (Univ. of Pisa)
• Vito Lombardo, Bardeen Fellow (Sant’Anna School, 

Pisa)

OPERATION ADMINISTRATOR:
• Allen Rusy

TECHNICAL SPECIALISTS AND TECHS:
• Tom Van Raes, Marianne Bossert

VISITING SCIENTIST:

Superconductor R&D Group
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• Cristian Boffo – ’99, Univ. of Udine: “Magnetization measurements at 4.2K of 
multifilamentary superconducting strands.”

• Michela Fratini – ’01, Univ. of Pisa: “A device to test critical current sensitivity 
of Nb3Sn cables to transverse pressure.”

• Sara Mattafirri – ’02, Univ. of Pisa: “Kinetics of phase growth during the Cu-
Sn diffusion process and the Nb3Sn formation. Optimization of superconducting 
properties.”

• Licia Del Frate – ’03, Univ. of Pisa: “Design of a low resistance sample holder 
for instability studies of superconducting wires.”

• Vito Lombardo – ’07, Sant’Anna School, Pisa: “Automation of Short Sample 
Facility for critical current and low field instability measurements of 
superconducting strands at cryogenic temperatures.”

• Marco Danuso – in progress, Sant’Anna School, Pisa: “Parametric analysis of 
forces and stresses in superconducting magnets  windings.”

Graduate Students
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Equipment

15/17T Teslatron -’98
14/16T Teslatron -’05

SEM and Optical microscopes-’00

Two 1100°C tube furnaces-’98
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Probes for Strand Tests

’98 First Ic probe

’01 Transverse pressure

’99 Magnetization

’03 Low resistance probe’05 HTS probe

C. Boffo Laurea Thesis

L. Del Frate Laurea Thesis

M. Fratini Laurea Thesis
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Fixtures for Cable Tests

’03 Small Racetrack

’01-’03 SC Transformer

’04 Cable sample holder for Cern tests

’00-’01 Cable sample holder for NHMFL tests
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Cable Machine

• Strand number: up to 42
• Strand diameter: 0.3-1.5 mm
• Cable transposition angle: 8-16 degree
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Theories on Superconductivity...

Ginzburg-Landau
Introduces a complex 
wavefunction ψ as an order 
parameter within Landau’s 
theory of second-order 
phase transitions.

N SC N SC

Type I Type II

BCS
Microscopic theory. 
Predicts the existence of an 
energy gap ∆ ∝ kTc
between the ground state 
and the quasi-particle 
excitations of the system.
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Samples under Comparison
 

Solder fillets

Stabilizer
HTS insert 
Stabilizer 

0.2 mm 
 

--------------------------------------------------------4.4 mm     ------------------------------------------------------------

Perpendicular cross section of a  
4.4 x 0.2 mm “344” wire 
Cu stabilizer on both sides 

 Hermetic BSCCO-2223 tape 348 Superconductor 
Min Ic (77 K, self-field, 1 µV/cm) 115 A 110 A 
Average thickness tT 0.31 mm 0.2 mm 
Average width wT 4.8 mm 4.8 mm 
Laminate stainless copper 
Laminate thickness 2 x 0.037 mm 2 x 0.050 mm 
YBCO layer thickness  1.4 µm 
Min. critical bend diameter 50 mm 50 mm 
Max. rated tensile strain  (95% Ic retention ) 0.3 % 0.3 % 

 

2G 348Bi-2223
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SuperPower 2G HTS Wire™

2 µm Ag

20µm Cu

20µm Cu

50µm Hastelloy substrate

1.2 µm HTS
~ 30 nm LMO

~ 30 nm Homo-epi MgO
~ 10 nm IBAD MgO

< 0.145 mm
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Flux Pinning Enhancement in 2G 
Coated Conductors by AMSC

The 1.4 µm thick superconducting layer is a hybrid: 
* Top layer is undoped YBCO with planar defects
* Bottom layer is doped with RE oxide for c-axis pinning
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Labs side by side

FOR STRAND TESTS:
FNAL:  15/17 T, 1800 A

14/16 T, 1000 A
LBNL:  14 T, 2000 A
BNL:    11.5 T, 1200-1500 A

FOR CABLE TESTS:
FNAL: 28,000 A SC transformer for tests at selffor tests at self--field (<2 T)field (<2 T)

(Small racetrack coils for tests at field)(Small racetrack coils for tests at field)
BNL:BNL: Cable test facility, 7 T max, 25,000 A maxCable test facility, 7 T max, 25,000 A max
LBNL: LBNL: (Sub(Sub--scale racetrack coils for tests at field)scale racetrack coils for tests at field)
CERN: CERN: FrescaFresca facility, 10 T max, 32,000 A (40,000 facility, 10 T max, 32,000 A (40,000 

w/transformer)w/transformer)

 BNL LBNL FNAL 
Ic at 4.2 K Y Y Y 
Ic at 1.9 K Y N Y 
Low field magnetization Y N Y 
High field magnetization N N Y 
Ic under transverse pressure N N Y 
Cable test at self-field Y N Y 
Cable test at field Y N N 

 

Test Capabilities
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Effect of Deff and RRR
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Summary of measurements on strands and 
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High RRR improves strand 
stability, although the 
absolute effect is small.


